skip to main content


Search for: All records

Creators/Authors contains: "Atlas, Elliot L."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep convection in the Asian summer monsoon is a significant transport process for lifting pollutants from the planetary boundary layer to the tropopause level. This process enables efficient injection into the stratosphere of reactive species such as chlorinated very short-lived substances (Cl-VSLSs) that deplete ozone. Past studies of convective transport associated with the Asian summer monsoon have focused mostly on the south Asian summer monsoon. Airborne observations reported in this work identify the East Asian summer monsoon convection as an effective transport pathway that carried record-breaking levels of ozone-depleting Cl-VSLSs (mean organic chlorine from these VSLSs ~500 ppt) to the base of the stratosphere. These unique observations show total organic chlorine from VSLSs in the lower stratosphere over the Asian monsoon tropopause to be more than twice that previously reported over the tropical tropopause. Considering the recently observed increase in Cl-VSLS emissions and the ongoing strengthening of the East Asian summer monsoon under global warming, our results highlight that a reevaluation of the contribution of Cl-VSLS injection via the Asian monsoon to the total stratospheric chlorine budget is warranted.

     
    more » « less
    Free, publicly-accessible full text available March 19, 2025
  2. Abstract. Bromine released from the decomposition of short-lived brominated source gases contributes as a sink of ozone in the lower stratosphere.The two major contributors are CH2Br2 and CHBr3.In this study, we investigate the global seasonal distribution of these two substances, based on four High Altitude and Long Range Research Aircraft (HALO) missions, the HIAPER Pole-to-Pole Observations (HIPPO) mission, and the Atmospheric Tomography (ATom) mission.Observations of CH2Br2 in the free and upper troposphere indicate a pronounced seasonality in both hemispheres, with slightly larger mixing ratios in the Northern Hemisphere (NH).Compared to CH2Br2, CHBr3 in these regions shows larger variability and less clear seasonality, presenting larger mixing ratios in winter and autumn in NH midlatitudes to high latitudes.The lowermost stratosphere of SH and NH shows a very similar distribution of CH2Br2 in hemispheric spring with differences well below 0.1 ppt, while the differences in hemispheric autumn are much larger with substantially smaller values in the SH than in the NH.This suggests that transport processes may be different in both hemispheric autumn seasons, which implies that the influx of tropospheric air (“flushing”) into the NH lowermost stratosphere is more efficient than in the SH.The observations of CHBr3 support the suggestion, with a steeper vertical gradient in the upper troposphere and lower stratosphere in SH autumn than in NH autumn.However, the SH database is insufficient to quantify this difference.We further compare the observations to model estimates of TOMCAT (Toulouse Off-line Model of Chemistry And Transport) and CAM-Chem (Community Atmosphere Model with Chemistry, version 4), both using the same emission inventory of Ordóñez et al. (2012).The pronounced tropospheric seasonality of CH2Br2 in the SH is not reproduced by the models,presumably due to erroneous seasonal emissions or atmospheric photochemical decomposition efficiencies.In contrast, model simulations of CHBr3 show a pronounced seasonality in both hemispheres, which is not confirmed by observations.The distributions of both species in the lowermost stratosphere of the Northern and Southern hemispheres are overall well captured by the models with the exception of southern hemispheric autumn,where both models present a bias that maximizes in the lowest 40 K above the tropopause, with considerably lower mixing ratios in the observations.Thus, both models reproduce equivalent flushing in both hemispheres, which is not confirmed by the limited available observations.Our study emphasizes the need for more extensive observations in the SH to fully understand the impact of CH2Br2 and CHBr3 on lowermost-stratospheric ozone loss and to help constrain emissions.

     
    more » « less
  3. Abstract

    Tropospheric18O18O is an emerging proxy for past tropospheric ozone and free‐tropospheric temperatures. The basis of these applications is the idea that isotope‐exchange reactions in the atmosphere drive18O18O abundances toward isotopic equilibrium. However, previous work used an offline box‐model framework to explain the18O18O budget, approximating the interplay of atmospheric chemistry and transport. This approach, while convenient, has poorly characterized uncertainties. To investigate these uncertainties, and to broaden the applicability of the18O18O proxy, we developed a scheme to simulate atmospheric18O18O abundances (quantified as ∆36values) online within the GEOS‐Chem chemical transport model. These results are compared to both new and previously published atmospheric observations from the surface to 33 km. Simulations using a simplified O2isotopic equilibration scheme within GEOS‐Chem show quantitative agreement with measurements only in the middle stratosphere; modeled ∆36values are too high elsewhere. Investigations using a comprehensive model of the O‐O2‐O3isotopic photochemical system and proof‐of‐principle experiments suggest that the simple equilibration scheme omits an important pressure dependence to ∆36values: the anomalously efficient titration of18O18O to form ozone. Incorporating these effects into the online ∆36calculation scheme in GEOS‐Chem yields quantitative agreement for all available observations. While this previously unidentified bias affects the atmospheric budget of18O18O in O2, the modeled change in the mean tropospheric ∆36value since 1850 CE is only slightly altered; it is still quantitatively consistent with the ice‐core ∆36record, implying that the tropospheric ozone burden increased less than 40% over the twentieth century.

     
    more » « less
  4. Abstract

    The Asian summer monsoon (ASM) as a chemical transport system is investigated using a suite of models in preparation for an airborne field campaign over the Western Pacific. Results show that the dynamical process of anticyclone eddy shedding in the upper troposphere rapidly transports convectively uplifted Asian boundary layer air masses to the upper troposphere and lower stratosphere over the Western Pacific. The models show that the transported air masses contain significantly enhanced aerosol loading and a complex chemical mixture of trace gases that are relevant to ozone chemistry. The chemical forecast models consistently predict the occurrence of the shedding events, but the predicted concentrations of transported trace gases and aerosols often differ between models. The airborne measurements to be obtained in the field campaign are expected to help reduce the model uncertainties. Furthermore, the large‐scale seasonal chemical structure of the monsoon system is obtained from modeled carbon monoxide, a tracer of the convective transport of pollutants, which provides a new perspective of the ASM circulation, complementing the dynamical characterization of the monsoon.

     
    more » « less
  5. Abstract

    This study investigates the use of airborne in situ measurements to derive transit time distributions (TTD) from the boundary layer (BL) to the upper troposphere (UT) over the highly convective tropical western Pacific (TWP). The feasibility of this method is demonstrated using 42 volatile organic compounds (VOCs) measured during the Convective Transport of Active Species in the Tropics (CONTRAST) experiment. Two important approximations necessary for the application are the constant chemical lifetimes for each compound and the representation of the BL source by the local CONTRAST data. To characterize uncertainties associated with the first approximation, we quantify the changes in derived TTDs when chemical lifetimes are estimated using conditions of the BL, UT, and tropospheric average. With the support of a trajectory model study in a companion paper, we characterize the BL source region contributing to the transport to the sampled UT. In addition to the TTDs derived using a regional average, we analyze the potential information content in locally averaged measurements to represent the dynamical variability of the region. Around 150 TTDs, derived using measurements on a ∼100 km spatial scale, show a distribution of mean and mode transit times consistent with the wide range of convective conditions encountered during the campaign. Two extreme cases, with the shortest and the near‐longest TTD, are examined using the dynamical background of the measurements and back trajectory analyses. The result provides physical consistency supporting the hypothesis that sufficient information can be obtained from measurements to resolve dynamical variability of the region.

     
    more » « less
  6. Abstract

    Convective transport from the marine boundary layer to the upper troposphere (UT) is investigated using airborne in situ measurements of chemical species over the tropical western Pacific. Using 42 volatile organic compounds with photochemical lifetimes ranging from shorter than a day to multiple decades, we derive a transit time spectrumG(t)and the associated modal and mean transit times for the UT air mass over the convectively dominant tropical western Pacific region.G(t)describes relative contributions of air masses transported from the marine boundary layer to the UT via all transport paths with different transit times. We further demonstrate that the volatile organic compound‐derived transit time scale is broadly comparable to that estimated from convective mass flux. The observation‐based transit time spectrum not only provides insights into convective transport pathways, but also has the potential to serve as an effective diagnostic for evaluating the representation of convective transport in global models.

     
    more » « less